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IntroductIon

 Precision medicine research de-
signed to reduce health disparities 
often involves studying multi-level 
datasets to understand how diseases 
manifest disproportionately in one 
group over another, and how scarce 
health care resources can be directed 
precisely to those most at risk for 
disease.1 Appropriate application of 
machine learning methods can help 
ensure that we maximize the clinical 
utility of tools we develop by taking 
into account each individual patient’s 
biology, lifestyle, and environment. 
 In this article, we provide a struc-
tured tutorial for medical and public 
health researchers on applying machine 
learning methods in precision medi-
cine research designed to reduce health 
disparities. Machine learning refers to 
using algorithmic approaches—com-
monly referred to as learners, predictive 
models, or estimators—to categorize 
data or predict an outcome. The term 
machine learning encompasses a wide 
array of methods with a common goal: 
to link inputs to an output accurately 
by repeatedly refining rules governing 
how input data relate to the output 
result. The rules are refined through 
analyzing multiple data subsets and 
sequentially, incrementally improv-

ing the rules being learned. Here, we 
describe the most common machine 
learning approaches in use today, high-
lighting their advantages and disadvan-
tages, their potential uses, and situa-
tions in which they may be avoided. 
We demonstrate their application in 
an example dataset with open-source 
statistical code described in this article.

Methods

Example Problem
 Suppose we have developed an 
intervention through which patients 
would receive an environmental home 
scan service that tests for, and removes, 
potentially hazardous contaminants 
that are related to their disease. Also 
suppose that we are constrained and 
can only refer those patients who are 
at high-risk of suffering from environ-
mental contamination. One way to 
identify high-risk patients would be 
through a biomarker indicating possi-
ble exposure to specific environmental 
contaminants. We want to know there-
fore, which biomarker helps allocate 
services from several biomarkers that 
have been proposed to screen patients. 
Each biomarker, however, interacts in 
a complex biological pathway and has 
multi-level interactions with clinical, 
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demographic, social, economic, and 
community-level factors, including a 
person’s co-morbid conditions, age, 
housing conditions, and the commu-
nity’s environmental contamination. 
A biomarker may indicate contamina-
tion only among certain people with 
a key residential housing background, 
and may only be useful for screening 
disease among those; furthermore, a 
single biomarker’s level may be deter-
mined through multiple mechanisms, 
such that an environmental scan is 
only appropriate when other factors af-
fecting the biomarker level are factored 
in. For example, C-reactive protein 

and patient outcomes data revealing 
which patients actually had contami-
nation in their homes and which pa-
tients did not. Our goal is to design a 
machine learning algorithm that will 
learn from this historical data and ac-
curately direct referrals for future pa-
tients, optimizing the referral process 
to precisely refer those patients most 
likely to benefit from the intervention.
 To guide our approach to study-
ing this problem, we accompany 
this article with a simulated data-
set and statistical code in R (avail-
able for download at https://github.
com/sanjaybasu/MLforPMHD). 

Key Terms and Concepts

Supervised vs Unsupervised 
Learning
 There are two major categories of 
machine learners. Supervised learners 
learn the relations between input and 
outcomes data, then predict future 
outcomes based on future patient’s 
input data, and so require patient fea-
tures as inputs and a disease outcome. 
Standard logistic regression is a super-
vised learning example, as it maps co-
variates onto the probability of an out-
come. Supervised learners will be the 
exclusive focus of this article. “Unsu-
pervised” learners learn how to cluster 
or categorize only input data, naturally 
grouping similar data types, such as 
through factor analysis.3 In the above 
example research problem, a supervised 
learner would be one that uses patient 
features to predict who will have con-
tamination in their home, while an 
unsupervised learner would be one 
that clusters patients into groups based 
on similar features (eg, similar demo-
graphics, similar biomarkers, etc.). 

Overfitting, Regularization and 
Cross-Validation
 Overfitting refers to the process by 
which a learner not only captures the 
general relationships between input 
and output data, but wrongly captures 
random noise in the dataset (Figures 
1-3), which prevents the learner from 
making accurate and generalizable pre-
dictions when applied in the future. In 
the above example research problem, 
overfitting might occur if a learner 
only learns that people who are be-
tween 4.1 and 6.9 years old with high 
values on three biomarkers are at risk 
for having contamination, and fails to 
identify that a 4.0 year old or a 7.0 year 
old with similarly elevated biomark-
ers are also at risk. (Figures 1 and 2)
 To increase generalizability and 
prevent overfitting, we try to follow 
Occam’s Razor, which reminds us that 
we don’t want to produce a compli-
cated algorithm to do something if 
we can have a simpler algorithm that 
does our chosen task well. In addi-
tion to being more generalizable, a 
simpler algorithm may require less 
input data or complicated data trans-
formations, may be more interpre-
table, and may be more easily fixed if 
predictions turn out to be erroneous. 
 Regularization refers to processes 
that help enforce Occam’s Razor when 
we’re training a machine learner, par-
ticularly when the input data vari-
ables are correlated, as is often the case 
with patient clinical data, lab values 
(biomarkers), and diagnoses and so-
cial variables. The two most common 
regularization processes are called: 1) 
L1 regularization, or “LASSO” (which 
stands for least absolute shrinkage and 
selection operator), and 2) L2 regu-
larization, or “ridge” regularization. 

Machine learning refers 
to using algorithmic 

approaches—commonly 
referred to as learners, 
predictive models, or 

estimators—to categorize 
data or predict an 

outcome.

level may be high from inflammatory 
atherosclerotic disease processes or due 
to specific environmental pollutants,2 
but only in one case would the high 
level indicate that an environmental 
contaminant scan would be warranted. 
 Now suppose that we have a da-
tabase of patient features, including 
a series of biomarkers thought to in-
dicate contaminant exposure, patient 
demographics and clinical features, 
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LASSO tends to select one correlated 
variable among others, like choosing a 
representative variable for many related 
variables. In a standard logistic regres-
sion, for example, LASSO will include 
one correlated predictor variable in the 
final equation and set the regression 
coefficients for its related variables to 
zero; this is operationalized by penal-
izing the absolute sum of the regression 
coefficients. By contrast, ridge regular-
ization of a logistic regression tends to 
set the regression coefficients of corre-
lated variables to an equal value, under 
the premise that correlated variables 
should be similar and extreme values 
may be based on outliers; this is op-
erationalized by penalizing the squared 
sum of the regression coefficients.4

 In practice, we split the dataset 
into two subsets. We use the “valida-

tion” (test) subset only once, after the 
learner has been fine-tuned, to assess 
the estimator’s generalizability. We re-
peatedly sample the other subset, the 
training subset, in a cross-validation 
process (Figure 3). In cross-validation, 
we must choose how much to regular-
ize the learner by selecting a penalty 
parameter that determines how much 
to choose one correlated variable over 
others (via LASSO) or restrict corre-
lated variables’ coefficients to be similar 
(via ridge). With each sample of train-
ing data, we train the learner by finding 
the penalty parameter value that gives 
the lowest mean-squared error be-
tween prediction from the learner and 
observed. The statistical code accom-
panying this tutorial illustrates how 
to implement this regularization ap-
proach through cross-validation in R.4

Bagging and Boosting
 Maximizing the learner’s predic-
tive performance is a central machine 
learning principal. In an averaging 
strategy called bagging, we train many 
learners on many training data sub-
samples, assuming that repeating the 
process many times will settle to a 
good average prediction. We take the 
average of a big bag filled with learners, 
each treated equally.5 In an alternative 
boosting strategy, we first train a single 
learner, then learn from the first learn-
ers’ errors to improve the learner in the 
next round of sampling, and so on.6,7 
Bagging can help avoid getting stuck 
down a wrong path when a bigger im-
provement could be found by looking 
more broadly across possible ways to 
model the data. Conversely, simpler 
problems such as predicting an out-
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Figures 1-2: Key concepts for machine learning. Overfitting. Suppose we have sampled some variable x and outcome y in a field experiment, such as x variable “age” 
and y variable “cardiovascular event risk”. The estimator (fitted curve) in Figure 1 may appear to be “better” by a performance metric such as the R2 (the coefficient of 
determination, reflecting the proportion of variance in y that is explained by the model; this equals 1 because the estimator has perfectly fit the data), but we would not 
expect the curved estimator to reliably predict outcome y given some values of variable x or even fit the data very well if we were to repeat the experiment, because the 
curve has fitted random error in the dataset. By contrast, the estimator (line) in Figure 2 may have poorer performance on a metric such as the R2, but does a better job of 
capturing the general relationship between outcome y and variable x, as the ‘true’ model generating the relationship between x and y in this case was a simple linear model 
with random noise added, not a complex polynomial. Adapted from.12
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come using variables with few classes, 
rather than with multi-class or contin-
uous variables, can often be modeled 
best through boosting.8,9 Our statisti-
cal code illustrates both approaches, 
which are discussed further below.

Metrics for Rigorous 
Evaluation
 A key study design question is: 
what marks a good learner in this 
study and how will we fairly compare 
our learner to alternatives? The most 
common machine learning evalua-
tion metric is the C-statistic, or the 
“area under the receiver operating 
characteristic (ROC) curve” (Figures 
4-5). In our research study example, 
the C-statistic discriminates, or cap-

tures how often a learner will cor-
rectly select the higher-risk person 
among a pair of people, where only 
one in the pair has the outcome.10 
 In clinical medicine, the ROC 
plot x-axis corresponds to 1 minus 
the specificity of a test, and the y-axis 
to the sensitivity of a test. A machine 
learner best for reassuring people that 
they do not have a disease (avoids false 
negatives) would have a high value on 
the y-axis of the ROC curve (sensitiv-
ity), even if it had a mediocre value 
on the x-axis (specificity). A machine 
learner suited best to confirming the 
presence of a disease (avoids false 
positives) could have a high value 
on the x-axis (specificity) even if it 
has mediocre y-axis values (sensitiv-

ity). In these studies, pre-specifying 
a sensitivity or specificity evaluation 
metric, rather than just the com-
posite C-statistic, can be important.
 To analyze for correct absolute 
risk estimates, we assess the calibra-
tion curve (Figures 4-5), which is a 
plot of the predicted rate of outcomes 
among centiles of the validation data-
set population (x-axis) against the ob-
served rate of outcomes among those 
centiles of the validation dataset pop-
ulation (y-axis); a perfect learner will 
have a 45-degree line between the pre-
dicted and observed outcome rates. 
The Hosmer-Lemeshow test is a com-
mon statistical test for evaluating the 
degree of error between the predicted 
and observed rates of the outcomes 
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Figure 3. Cross-validation
After each sample of training data is obtained, we train the learner by finding the penalty parameter value that minimizes the mean-squared error between the predictions 
from the learner and the observed training data subset. We then test the performance on the held-out test subset of the data. Adapted from.12
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plotted in the calibration curve.11 
 Other metrics commonly seen in 
machine learning literature include 
a confusion matrix, or contingency 
table, which is a 2-by-2 table of true 
and false positive and negative out-
comes in the validation dataset (see 
https://github.com/sanjaybasu/ML-
forPMHD for Appendix Table 1). 
Some machine learning papers also 
use the metric of accuracy, which is 
the sum of true positives plus true 
negatives, divided by the total num-
ber of predictions. A third common 
metric is precision, which is the sum 
of true positives divided by the sum 
of true and false positives, which 
clinical epidemiologists call the posi-
tive predictive value. In all cases, 
the pre-specified evaluation metric 

should correspond to the ultimate 
application by selecting a metric 
that corresponds most to the study’s 
goals, timeframe, effort, and budget.

Major Families of Machine 
Learning Methods
 Below, we present a simplified ru-
bric that covers the major current ap-
proaches for training a machine learner.

Tree-based Learners
 Two of the most common train-
ing approaches are both strategies for 
building “decision trees” from data. 
Decision trees are, essentially, flow-
charts that guide categorization of a 
particular patient or population (Fig-
ures 6,7,8).12 Each branch divides the 
study population into increasingly 

smaller subgroups that differ in their 
probability of an outcome of inter-
est or their likelihood of benefitting 
from a particular intervention.13 A 
good decision tree will separate the 
sampled population into groups that 
have low within-group variability, 
but high between-group variability. 
In the above example research prob-
lem, where we are trying to predict 
whether a patient has home environ-
ment contamination, a decision tree 
might first separate our patient popu-
lation by neighborhood, then identify 
which features in the first neighbor-
hood define patients into high-risk vs 
low-risk groups; those features may 
differ in the second neighborhood, 
and the third, and so on. An advan-
tage of tree-based learners is the abil-
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Figure 4. Evaluation metrics 
The receiver operating characteristic (ROC) curve, with the true positive rate (‘tpr’, or sensitivity) on the y-axis and false positive rate (‘fpr’, or 1-specificity) on the x-axis; 
the area under the curve is the C-statistic.
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ity to consider multiple covariates at 
once, potentially capturing complex 
interactions between covariates (eg, 
between neighborhood and other 
factors) and nonlinearities (since co-
variates can have different cut-points 
defining branches, and different out-
come rates in one branch than an-
other). However, a limitation is that 
they are prone to overfitting because 
the decision tree has over-interpreted 
noise or random outliers in the data 
as reflecting a real phenomenon or a 
real subgroup. Even cross-validation 
may not detect the over-fitting.14 
 Two common tree-based learn-
ers that minimize the risk of overfit-
ting, are gradient boosting machines 
(GBM) and random forests (RF). In 
both methods, many trees are grown 

to subsamples of the training dataset. 
GBMs average many trees where er-
rors made by the first tree contribute 
to learning of a more optimal tree in 
the next iteration (a boosting strat-
egy).6,7 RFs average a forest composed 
of many trees, where each tree is inde-
pendently fitted with a random subset 
of covariates defining branches (a bag-
ging strategy).5 As noted above, the 
bagging strategy will often produce 
higher discrimination than the boost-
ing strategy in situations where there 
is a complex outcome being predicted 
(eg, a categorical or continuous out-
come), rather than a simple dichoto-
mous outcome (eg, the absence or 
presence of a disease or condition).8,9

 Training learners using tree-based 
methods can be particularly helpful 

when trying to identify how differ-
ent risk factors—in isolation or in 
combination—contribute to differ-
ential overall risk, as is often the case 
in health disparities research. Addi-
tionally, tree-based methods are ef-
fective when complex combinations 
of factors at multiple levels—such as 
among subcellular, individual, and 
neighborhood-level factors—interact 
to determine the overall risk. Trees can 
also be more useful than standard lo-
gistic regression when researchers are 
trying to predict a rare outcome (eg, 
a high-cost hospitalization, or a rare 
but severe disease complication) from 
many complex interacting factors.15

 A GBM approach requires re-
searchers to decide several factors 
that can influence how well a learner 
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performs (known as “tuning”): how 
many trees to average, how deep the 
trees should be (how many “layers” of 
branches to have, which determines 
how many subpopulations to divide 
the population into), and how quickly 
the trees should adapt to initial error 
(the “learning rate”) to optimize a per-
formance metric. On the other hand, 
the RF approach generally produces 
a reproducible result with maximum 
discrimination across a wide range of 
specifications without extensive tun-
ing. Hence, the RF approach is often 

reasonably favored by researchers new 
to machine learning. The statistical 
code (available at https://github.com/
sanjaybasu/MLforPMHD) provides 
examples of both GBMs and RFs 
applied to the prediction of environ-
mental contamination in a mock da-
taset and compares their performance 
to a standard logistic regression.

Deep Learning
 Training neural networks to pre-
dict outcomes is deep learning. A 
neural network is a series of data trans-

formations where the outputs from 
one series of transformations inform 
the inputs to the next series (Figures 
6,7,8).12,16 Each transformer (or neu-
ron) in the network takes a weighted 
combination of inputs reflecting a 
weighted sum of the observed data 
(for the first layer of neurons) or from 
a previous layer of neurons (for the 
second and subsequent layers of neu-
rons), and produces an output based 
on a nonlinear transformation func-
tion called an activation function, 
which is like a link function in statis-
tical regression. The weights for each 
sum plus activation function values 
determine the output from the net-
work. A standard logistic regression is 
simply a neural network with a single 
layer of neurons, in which each trans-
former multiplies the input covariate 
by a regression coefficient, and a logis-
tic function is the activation function. 
Regularization and cross-validation 
techniques are typically applied to 
neural networks to prevent overfitting.
 There are many ways to adapt a deep 
learning neural network to complex 
problems. The simplest deep learning 
neural network structure, visualized in 
Figures 6,7,8 is known as a feedforward 
neural network, in which each layer of 
neurons is fully connected to the next 
layer, and information only flows in 
one direction. By contrast, recurrent 
neural networks have backward feed-
back from one layer to a prior layer, 
which allows for more learning across 
a time series, and is particularly suited 
for problems where knowledge of one 
prediction affects the next prediction 
(eg, in speech recognition, where the 
prior word informs the choice of the 
next word; or in predicting sequential 
disease events for an individual, where 
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Adapted from Doupe et al.12
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prior diagnoses inform the probabil-
ity of a subsequent diagnosis).17 Ad-
ditional common types of supervised 
deep learners include convolutional 
neural networks, which capture local 
features of the training dataset then 
combine locally learned networks to 
gather a global understanding (eg, for 
image recognition, where cluster of 
pixels form one part of a picture, and 
these parts are combined to recognize 
the overall image). Some unstructured 
deep learners include autoencoders, 
which take noisy data and try to re-
construct the original data, a process 
known as denoising; and word2vec, 
a series of two-layer neural networks 
trained to detect words in context to 
aid natural language processing.17–20

 At the time of this writing, deep 
learning neural networks in the medi-
cal and public health context remain 
limited to image recognition (eg, ra-
diologic detection of abnormalities on 
X-rays), disease classification problems 
(eg, reading electronic medical record 
notes to categorize and classify disease 
phenotypes in a data-driven manner), 
and outcome prediction (predicting 
a clinical outcome based on complex 
features).17,20,21 Deep learning may be 
more effective than tree-based meth-
ods for outcome prediction when 
complex context in text (eg, in clini-
cal notes or other written assessments) 
must be processed and included as 
predictors, when extremely complex 
interactions are thought to exist be-
tween covariates that predict an out-
come (eg, between multiple-omics 
markers), or when complex sequential 
processes must be predicted rather 
than just a single outcome (eg, hos-
pital admission, discharge diagnosis, 
then readmission, and mortality). 

Deep learning can, however, be diffi-
cult to implement because researchers 
have to choose activation functions, 
network depths (number of layers), 
and degree of regularization, among 
other choices in structuring the model 
to customize it for the task being ac-
complished. The statistical code refer-
enced earlier in this article provides an 
example of constructing and tuning a 
standard feedforward neural network, 
and includes multiple common op-
tions for activation functions, network 
depths, and regularization processes; 
the code also enables comparison of 
network learners to tree-based estima-
tors and standard logistic regression 
for the example problem of predict-
ing home environmental contamina-
tion. Although the statistical code is 
in R to be familiar to epidemiologists 
and health services researchers, it 
should be noted that deep learning 
neural networks are more commonly 
programmed in Python due to speed 
and scaling limitations of R, and 
online tutorials for more advanced 
deep learning for medical applica-
tions using Python are recommended.

Ensembles
 A key insight from recent machine 
learning research is that an ensemble 
of learners can help more closely ap-
proximate the truth, even when no un-
derlying base learner is fully correct.22 
Researchers who have little a priori 
theory to favor one type of learner 
over another can particularly benefit 
from training an ensemble of learn-
ers. To train an ensemble, a researcher 
will first individually develop learners 
on the dataset, then use a meta-learn-
er (sometimes called a super learner or 
stacking method) to combine the pre-

dictions of the underlying base learn-
ers.23 Technically, both GBM and RF 
are ensemble learners because they 
combine individual decision trees 
to produce a composite prediction.

results

Performance Comparison 
among Methods for the 
Example Problem
 Analysis of the example problem 
described under the Methods section 
uses a simulated dataset containing 100 
variables that are correlated and inter-de-
pendent in complicated ways. The statis-
tical code referenced in this article allows 
readers to reproduce the simulated data-
set, within which are 40 binary variables, 
30 secondary dependent variables cor-
related with or conditioned upon some 
of the first 40 variables (reflecting, for 
example, co-morbidities that often oc-
cur together), 20 categorical variables, 
and 10 continuous variables, some a 
subset of variables predicting the out-
come of home environmental contami-
nation (a dichotomous outcome) with 
complex interactions and dependencies. 
 Using the statistical code and ap-
proaches described in the Methods, 
we find that a standard logistic regres-
sion—choosing covariates using elas-
tic net regularization to find a balance 
between LASSO and ridge regression, 
and thereby address collinearity and re-
duce overfitting—performed relatively 
poorly in terms of discrimination, with 
a C-statistic of .64. A RF learner pro-
vided slight improvement with a C-sta-
tistic of .69, which was also produced 
by a GBM learner. A deep learner only 
produced a slight improvement with a 
C-statistic of .70. An ensemble of these 
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learners, however, dramatically im-
proved discrimination with a C-statistic 
of .86. To further characterize the sensi-
tivity and specificity of the learners, we 
have included a confusion matrix (con-
tingency table) in the Appendix (avail-
able at: https://github.com/sanjaybasu/
MLforPMHD). Note that all evalua-
tion metrics are calculated on the vali-
dation dataset, not on the training data.

Interpreting Machine 
Learners: Visualizing inside 
the Black Box
 Two key strategies are available 
to researchers trying to understand 
how the learners have interpreted the 
data to produce useful predictions. A 

variable importance table or plot is a 
standard way to display how different 
variables are included in the learners, 
clarifying which variables are most 
influential in prediction (Figures 
9,10). The plot displays standardized 
coefficient magnitudes (ie, Z-scores) 
across all variables.23 Standardization 
is common in public health applica-
tions because it allows for correction 
of highly-skewed variables. Partial 
dependence plots allow us to visual-
ize how learners relate covariates to 
outputs.24 In particular, when covari-
ates go through complex transforma-
tions, a partial dependence plot ef-
fectively reveals to us how a learner 
has related values of an individual 

covariate with the probability of the 
outcome, revealing important non-
linearities for example (Figures 9,10).

conclusIon

 Here, we reviewed key terms and 
concepts in machine learning, criti-
cal methods for evaluation and in-
terpretation of machine learners, and 
major common types of learners, 
with accompanying statistical code 
to demonstrate their application.
 As with the presentation of many 
other types of research, machine learn-
ing articles are recommended to follow 
key principles of good research practice. 
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Figure 9. A variable importance plot showing the standardized coefficients from a learner (showing X variable #91 to 
be particularly important). IncNodePurity refers to the average increase in mean squared error of the model when the 
corresponding variable is excluded from the model.
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In closing, we review some of the prin-
ciples considered most critical for high-
quality machine learning papers.25–27 
 First, an important standard for 
reproducibility and extension in ma-
chine learning literature is the shar-
ing of statistical code and underlying 
data. De-identifying data and shar-
ing the raw statistical code is particu-
larly important given the problem 
that many researchers’ papers have 
been found to not be reproducible.28 
 Second, it is important for machine 
learning problems to be pre-specified, 
so that researchers are not tempted to 
use the approach purely to produce 
(potentially false-positive) associations. 

 Third, the end-user of a machine 
learner must be kept in mind. Dif-
ferent audiences need to either be 
able to interpret a learner, or just 
use the learner by inputting data 
and having the learner automati-
cally provide results (eg, at the back-
end of an electronic medical record). 
 Finally, it is critical that research-
ers using machine learning methods 
have data empathy, or the perspective 
that the quality and type of data must 
correspond well to the type of ques-
tion being asked and the future utili-
zation of the method. If a particular 
question cannot be answered well with 
a small dataset, it is unlikely that the 

question will be better answered with 
a larger dataset of the same type and 
data quality.4 For example, abundant 
use of insurance claims or electronic 
medical record data, which are large 
and widely available in the medical 
literature, is problematic for clinical 
studies, as prediction models will not 
actually predict the presence of dis-
ease, but rather of diagnostic billing 
codes that may poorly correlate to ac-
tual disease (and suffer from selection 
biases and misclassification errors). 
 As machine learning meth-
ods evolve, abiding by key prin-
ciples of good machine learning 
practice will serve to help improve 
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Figure 10. A partial dependence plot showing the relationship between an individual variable (X variable #91 in the example 
code) and the predicted probability of an outcome (mean_response). Note that all X variables are theoretical and explained 
further in the code accompanying this manuscript. The mean_response is the y outcome variable reflecting the probability of 
the outcome from 0 to 1
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the utility, trustworthiness, and 
impact of machine learning. 
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