Objective: Human immunodeficiency virus (HIV) infection and antiretroviral treatment are associated with metabolic and cardiovascular complications that resemble metabolic syndrome (MetS) and potentially increase the risk of diabetes and cardiovascular disease in this population. The purpose of this study was to determine the prevalence of MetS and its individual components among Hispanics living with HIV in Puerto Rico.

Methods: Data from 909 clinical records were extracted and the prevalence of MetS determined using the NCEP-ATPIII criteria. Fisher's exact test was used to detect sex differences, and logistic regression to examine the effect of age, sex, smoking, years of HIV infection, antiretroviral therapy, and Hepatitis C co-infection.

Results: The prevalence of MetS in our study group (35.4%) was higher than previously reported in the United States, but not higher than in the general population in Puerto Rico. Females had a higher prevalence of MetS (44.2%) than males (30.5%); mostly explained by high body mass index and waist circumference. Age and sex were associated with the presence of MetS.

Conclusion: Understanding ethnic and sex differences in the prevalence of metabolic risk factors is essential for the implementation of specific targeted interventions to prevent subsequent vascular morbidity and mortality in this population. (Ethn Dis. 2010;20:423–428)

Key Words: HIV, Metabolic Syndrome, Hispanics

INTRODUCTION

The availability of highly active antiretroviral therapy (HAART) has significantly improved life expectancy for people living with human immunodeficiency virus (HIV) infection. This clinical advance in therapy is associated with an increased risk of metabolic and cardiovascular complications such as visceral fat accumulation, dyslipidemia (ie, high triglycerides, low HDL), insulin resistance, and elevated blood pressure,1,2 all important components of metabolic syndrome (MetS). However, the potential synergy of metabolic complications in HIV infection, therapy, and race/ethnicity has not been evaluated.

Hispanics are disproportionately affected with diseases linked to MetS such as overweight/obesity, diabetes, and hypertension,3,4 and the age-adjusted prevalence of MetS among Hispanics in the United States (40.6%) is higher when compared with non-Hispanic Blacks (38.8%) and Whites (31.5%).5 Moreover, the age-adjusted prevalence of MetS among Hispanics in Puerto Rico (38.1%)6 is similar to non-Hispanic Blacks in the US,7 and higher than Hispanics in different Latin American countries.8 The prevalence of MetS and cardiometabolic risk factors among Hispanics living with HIV in Puerto Rico is unknown, and little is known about the prevalence of these complications among Hispanics living with HIV in general. Therefore, the purpose of our study was to determine the prevalence of MetS and the individual cardiometabolic risk factors in Hispanic adults living with HIV in Puerto Rico.

METHODS

Study Design

This cross-sectional study included all adult patients attending two HIV clinics and one HIV community-based alternative medicine program in San Juan between 2003 and 2007. These sites provide healthcare services to approximately 20% of the HIV/AIDS population living in Puerto Rico.9 Clinical records were reviewed and data extraction without personal identifiers completed by authorized personnel at each site. The consistency of data extraction and entry was checked by randomly selecting extraction forms, re-entering data, and comparing with the original file. Discrepancies were corrected after consultation with authorized personnel who verified the information with the original record in each site. Extraction forms excluded were those missing age, sex, height, weight, and two or more of the following: resting blood pressure, fasting glucose, triglyceride and HDL. The study was ap-
proved by the institutional review board of the University of Puerto Rico, Universidad Central del Caribe, and the Mayo Clinic in Rochester, Minnesota.

Study Outcomes

The most recent data available in each clinical record were used for analyses. Primary variables included: waist circumference, body mass index (BMI[kg/m²]), fasting glucose, triglycerides and HDL, use of antihypertensive and lipid control medications, resting systolic and diastolic blood pressures, and diagnosis of diabetes. Waist circumference was used as an index of visceral fat and BMI as an index of obesity, both were collapsed into one criterion called body shape. Other variables included: sex, date of birth, date and age at HIV diagnosis, viral load, CD4 count, education, alcohol consumption, hepatitis C co-infection, smoking, and history of antiretroviral medications.

The National Cholesterol Education Program – Adult Treatment Panel III (NCEP-ATPIII) criteria were used to determine the proportion of participants having one or more of the cardiometabolic risk factors,¹⁰,¹¹ and the proportion having MetS.

Data Management and Statistical Analyses

To include all participants and avoid biases, missing values were imputed using the Markov Chain Monte Carlo multiple-imputation method. Then, a sensitivity analysis was conducted including 280 patients with complete datasets. Descriptive statistics were performed for sociodemographic and research variables (ie, means, standard deviations, and proportions). Fisher’s exact test was used to identify sex differences in the prevalence of MetS, visceral fat/obesity, dyslipidemia, high fasting glucose, and hypertension; and differences between our study group and the general population in Puerto Rico using published data.⁶ The effect of age, sex, hepatitis C, and type of antiretroviral therapy was tested using logistic regression analysis. An alpha ≤.05 was used for statistical significance using SPSS Statistical Software (Release 18, SPSS Inc., Chicago, Ill).

RESULTS

Study Participants

A total of 909 data extraction forms were received from the collaborating sites, and 13 did not meet the inclusion criteria (Figure 1). From the remaining 897 records, 574 (64%) were males (a sex distribution closely resembling that of the HIV/AIDS epidemic in Puerto Rico), with a mean age of 44.7 ± 10.1 years. All participants were aged ≥21 years, non pregnant, with no history of illicit drug use/abuse, and without current AIDS diagnosis. An algorithm including the number of records reviewed, extraction forms ex-
Table 1. General characteristics of study participants

<table>
<thead>
<tr>
<th>Variable</th>
<th>All (n=897)</th>
<th>Females (n=323)</th>
<th>Males (n=574)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs</td>
<td>44.7 (10.1)</td>
<td>45.2 (10.1)</td>
<td>44.4 (10.1)</td>
<td>.19</td>
</tr>
<tr>
<td>Age at HIV, yrs</td>
<td>37.9 (10.7)</td>
<td>38.2 (10.9)</td>
<td>37.7 (10.5)</td>
<td>.70</td>
</tr>
<tr>
<td>CD4, cells/μL</td>
<td>473 (322)</td>
<td>486 (326)</td>
<td>467 (320)</td>
<td>.55</td>
</tr>
<tr>
<td><200</td>
<td>19%</td>
<td>16%</td>
<td>20%</td>
<td>.22</td>
</tr>
<tr>
<td>201–500</td>
<td>41%</td>
<td>44%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>>500</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>HIV RNA, copies/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non detectable</td>
<td>51%</td>
<td>48%</td>
<td>52%</td>
<td>.27</td>
</tr>
<tr>
<td><1,000</td>
<td>13%</td>
<td>14%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>1,000–30,000</td>
<td>21%</td>
<td>23%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>>30,000</td>
<td>16%</td>
<td>14%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Education ≥high school, %</td>
<td>56</td>
<td>48</td>
<td>60</td>
<td><.001</td>
</tr>
<tr>
<td>Smokers, %</td>
<td>50</td>
<td>44</td>
<td>53</td>
<td>.01</td>
</tr>
<tr>
<td>Alcohol abuse, %</td>
<td>39</td>
<td>27</td>
<td>45</td>
<td><.001</td>
</tr>
<tr>
<td>Hepatitis C, %</td>
<td>21</td>
<td>17</td>
<td>23</td>
<td>.06</td>
</tr>
<tr>
<td>HAART-Naïve, %</td>
<td>10</td>
<td>10</td>
<td>9</td>
<td>.75</td>
</tr>
<tr>
<td>PI Only, %</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>.82</td>
</tr>
<tr>
<td>NRTI/NNRTI Only, %</td>
<td>34</td>
<td>38</td>
<td>32</td>
<td>.07</td>
</tr>
<tr>
<td>HAART, %</td>
<td>45</td>
<td>42</td>
<td>46</td>
<td>.31</td>
</tr>
</tbody>
</table>

Data are given as mean (SD) except where noted.

HAART, highly active antiretroviral therapy.

PI, protease inhibitors.

NRTI/NNRTI, nucleoside and non-nucleoside reverse transcriptase inhibitors.

Metabolic Syndrome in HIV+ Hispanics

The 35.4% prevalence of MetS [among Hispanics living with HIV] was higher compared to the 24–26% prevalence reported among adults living with HIV in the United States,12,13 18% in Australia,14 and 17% in Spain.15

Cardiometabolic Variables

Sociodemographic and clinical characteristics organized by sex are presented in Table 1. No sex differences were observed for age, age at HIV infection, CD4, viral load, proportion with hepatitis C co-infection, and proportion using antiretroviral therapy. There were significant differences in the females reporting less formal education and males having a higher prevalence of smoking and alcohol abuse.

The prevalence of cardiometabolic variables organized by sex is presented in Table 2. Females had higher waist circumference, BMI, and HDL; and lower triglycerides and systolic blood pressure than males. Mean fasting glucose, and systolic and diastolic blood pressures were within normal values for both males and females. However, mean triglyceride, BMI and waist circumference were higher than normal values in both males and females.

High fasting glucose (≥100 mg/dL) was observed in 24% of participants, 35% were overweight (BMI = 25–29.9 kg/m²), 20% were obese (BMI ≥30 kg/m²), 50% had high triglycerides (≥150 mg/dL), 74% had low HDL levels (≤50 mg/dL), and 58% had blood pressure levels considered in the pre-hypertensive/hypertensive category (>120/80 mm Hg). No sex differences were observed in the proportion of patients diagnosed with diabetes or hypertension, conditions that developed after HIV diagnosis.

Metabolic Syndrome

The prevalence of MetS using actual and imputed values were not different (40.0% vs 35.4%, respectively; P=.28). The prevalence of each component of the MetS from actual and imputed values were also not different (ie, elevated fasting glucose: 15.9% vs 17.4%; elevated BMI and waist circumference: 36.4% vs 39.7%; elevated triglycerides: 50.2% vs 52.7%; low HDL: 54.0% vs 51.2%; and elevated blood pressure: 49.6% vs 48.3%; P>.05 for all). Because of these findings, the following results are based on the imputed values.

Sex differences in the prevalence of MetS and its individual components are presented in Figure 2. Females had a higher prevalence of MetS compared to males (44% vs 31%, respectively, P=.04), and body shape was the only individual component significantly higher in women compared to men, indicating that women had higher abdominal or general obesity than men. Logistic regression also confirmed that males were less likely to have MetS compared to females (OR: 0.61, 95% CI: 0.42–0.92; P=.02).

Older HIV patients (age ≥60 years) were more likely to have MetS than those aged <30 years (OR: 1.04, 95% CI: 1.01–1.08; P=.01), and the prevalence was higher in females, particularly in the younger and older age group (Table 3). After adjusting for age and sex, factors such as smoking, alcohol abuse, education level, age at HIV infection, antiretroviral therapy, and co-infection with hepatitis C did not influence the prevalence of MetS.

Discussion

This is the first study to report the prevalence of cardiometabolic risk factors and MetS among Hispanics living
with HIV in Puerto Rico. The 35.4% prevalence of MetS was high compared to the 24–26% prevalence reported among adults living with HIV in the United States,12,13 18% in Australia,14 and 17% in Spain.15 However, the crude prevalence of the MetS was not higher in the group of adults living with HIV compared to the general population in Puerto Rico6 (35.4% vs 43.3%, respectively, \(P = .155 \)). Also, the prevalence of individual components such as HDL, blood pressure, or obesity and central obesity were not different between our study group and the general population in Puerto Rico6 (51.2% vs 46.0%, \(P = .27 \); 48.3% vs 46.1%, \(P = .44 \); 39.7% vs 49.0%, \(P = .13 \), respectively). These results are consistent with previous reports,12,13 and suggest that environmental, sociocultural and/or genetic factors are as influential as HIV infection and its treatment in explaining the risk of cardiometabolic complications among Hispanics living with HIV in Puerto Rico.

According to the CDC,16 behavioral risk factors linked to cardiometabolic complications, such as poor nutrition and low physical activity, are highly prevalent among Hispanics in Puerto Rico compared to Hispanics and non-Hispanic Whites in the United States (physical inactivity: 49%, 33.2%, 23.8%, respectively; consumption of fruits and vegetables: 14.3%, 20.4%, 23.5%, respectively). Hispanic adults living with HIV in Puerto Rico are likely to have similar risk behaviors and therefore, similar risk of cardiometabolic dysfunction as the general population in Puerto Rico. However, we observed important differences in the prevalence of individual components of the MetS between our study group and the general population in Puerto Rico.6 The two most important factors driving the prevalence of MetS in the general population in Puerto Rico6 were elevated fasting glucose (49.8%) and abdominal obesity (49.0%), while, similar to previous studies,17 the two most influential factors in our study group were hypertriglyceridemia (52.7%) and low HDL levels (51.2%).

A lower prevalence of elevated fasting glucose and a higher prevalence

Table 2. Cardiometabolic characteristics of study sample

<table>
<thead>
<tr>
<th>Variable</th>
<th>All</th>
<th>Females</th>
<th>Males</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasting Glucose, mg/dL</td>
<td>96.1 (28.2)</td>
<td>95.0 (29.0)</td>
<td>96.7 (27.8)</td>
<td>.11</td>
</tr>
<tr>
<td>(<100)</td>
<td>76%</td>
<td>77%</td>
<td>75%</td>
<td>.69</td>
</tr>
<tr>
<td>(100–124)</td>
<td>16%</td>
<td>15%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>(>124)</td>
<td>8%</td>
<td>9%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Body shape, BMI; kg/m²</td>
<td>26.3 (5.4)</td>
<td>27.2 (6.1)</td>
<td>25.9 (4.9)</td>
<td>.007</td>
</tr>
<tr>
<td>(<18.5)</td>
<td>4%</td>
<td>5%</td>
<td>4%</td>
<td>.03</td>
</tr>
<tr>
<td>(18.5–24.9)</td>
<td>41%</td>
<td>35%</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>(25.0–29.9)</td>
<td>35%</td>
<td>35%</td>
<td>35%</td>
<td></td>
</tr>
<tr>
<td>(>29.9)</td>
<td>20%</td>
<td>25%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Body shape, waist circumference; cm</td>
<td>94.3 (5.6)</td>
<td>96.6 (17.8)</td>
<td>93.0 (13.9)</td>
<td>.03</td>
</tr>
<tr>
<td>Triglycerides, mg/dL</td>
<td>193.8 (162.5)</td>
<td>163.8 (99.0)</td>
<td>210.9 (187.4)</td>
<td>.003</td>
</tr>
<tr>
<td>(<150)</td>
<td>50%</td>
<td>57%</td>
<td>46%</td>
<td>.003</td>
</tr>
<tr>
<td>(150–199)</td>
<td>20%</td>
<td>19%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>(200–500)</td>
<td>26%</td>
<td>22%</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>(>500)</td>
<td>4%</td>
<td>2%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>HDL, mg/dL</td>
<td>43.7 (14.2)</td>
<td>48.0 (15.9)</td>
<td>41.2 (12.4)</td>
<td><.001</td>
</tr>
<tr>
<td>(<41)</td>
<td>47%</td>
<td>34%</td>
<td>54%</td>
<td><.001</td>
</tr>
<tr>
<td>(41–50)</td>
<td>27%</td>
<td>25%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>(51–60)</td>
<td>16%</td>
<td>24%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>(>60)</td>
<td>10%</td>
<td>17%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Blood Pressure, mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(<120/80)</td>
<td>43%</td>
<td>49%</td>
<td>39%</td>
<td>.004</td>
</tr>
<tr>
<td>(120–139/80–89)</td>
<td>40%</td>
<td>36%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>(140–159/90–99)</td>
<td>14%</td>
<td>10%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>(>160/100)</td>
<td>3%</td>
<td>5%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>120.5 (16.2)</td>
<td>118.1 (17.1)</td>
<td>121.8 (15.6)</td>
<td><.001</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>75.5 (10.6)</td>
<td>74.7 (10.9)</td>
<td>75.9 (10.4)</td>
<td>.10</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>18.5 (n=686)</td>
<td>18.0 (n=245)</td>
<td>18.8 (n=441)</td>
<td>.78</td>
</tr>
<tr>
<td>Diabetes, %</td>
<td>9.8 (n=519)</td>
<td>11.6 (n=190)</td>
<td>8.8 (n=329)</td>
<td>.31</td>
</tr>
</tbody>
</table>

Data are given as mean (SD) except where noted.

BMI, body mass index.

HDL, high density lipoprotein.

BP, blood pressure.
of elevated triglycerides were the most important differences observed between our study group and the general population in Puerto Rico (17.4% vs 49.8%, \(P < .01 \); and 52.7% vs 31.3%, \(P < .01 \); respectively). Mondy et al\(^{13} \) reported similar results when they compared adults living with HIV and the general population in the United States, suggesting that different approaches might be necessary for the management and control of cardiometabolic complications in adults living with HIV compared to the general population.

Although obesity was not among the components of the MetS with the highest prevalence in our study group, it has become an important health problem among females and males living with HIV. Before the introduction of HAART, elevated BMI was associated with a slower progression from HIV infection to AIDS; whereas now, elevated BMI is associated with high cholesterol, triglycerides, glucose, and insulin resistance.\(^{18,19} \)

Males and females in the general population in Puerto Rico did not differ in their prevalence of MetS;\(^6 \) however, females in our study group had a higher prevalence of MetS compared to males. Obesity/waist circumference was the only individual component with a higher prevalence among females compared to males, and similar to Mondy et al,\(^{13} \) we observed a higher mean BMI and waist circumference, and lower triglyceride levels among females compared to males. These differences suggest that sex-specific approaches might be needed for the prevention and clinical care of cardiometabolic dysfunction in adults living with HIV.

Metabolic syndrome is known to increase the risk of cardiovascular disease, and the risk is higher as the number of individual components increases, particularly in females.\(^{20} \) In the present study, the prevalence of at least one cardiometabolic disorder was 92% (females=95%, males=91%) compared to 85% in the general population in Puerto Rico;\(^6 \) and the prevalence of meeting all five criteria was 2% in our study group compared to 7% in the general population. Elevated triglycerides (53%) and low HDL levels (51%) were the components with the highest prevalence; high fasting glucose the component with the lowest prevalence (17%), and elevated resting blood pressure the third most influential component with a prevalence of 48.3%. This is higher than the prevalence of hypertension (17–21%) previously reported among adults living with HIV in the United States.\(^{21} \) The presence of all mentioned factors combined with persistent levels of immune activation may explain the high frequency of cardiovascular events observed in this population.

Although many metabolic abnormalities in adults living with HIV have been attributed to antiretroviral therapy,\(^{12,14,22,23} \) in the present study, specific antiretroviral classes were not related to MetS after adjusting for age and sex. Compared to adults living with HIV that were naïve or were not taking antiretrovirals for at least two years, the odds of having MetS in those taking HAART was not significant (OR:1.17, 95%CI: .65–2.15, \(P = .62 \)). This observation differs from Bergersen et al\(^{24} \) who reported a higher prevalence of MetS in HAART treated compared with HAART-naïve patients, but are in agreement with Sobieszczyk et al\(^{22} \) who reported no differences in the prevalence between HIV infected women naïve to antiretrovirals with those taking HAART.

Some important limitations in our study need to be addressed. Missing data is a known problem when using data extraction from clinical records, and using imputation methods is not always a valid remedy. However, when we compared the prevalence of MetS and its individual components using impu-
Metabolic Syndrome in HIV+ Hispanics - Ramírez-Marrero et al

tation and actual values, no significant
differences were detected. Another limita-
tion in our data extraction was the lack of
information regarding physical activity
and nutritional behaviors, and the
inconsistency in recording follow-up
valuables such as waist circumference, HDL,
LDL, lipodystrophy and microalbumin-
uria. However, this is the largest dataset
that has evaluated the prevalence of MetS
in a Hispanic HIV- infected population.

In summary, the prevalence of MetS
among Hispanic adults living with HIV
in Puerto Rico was higher than previ-
ously reported in the United States but
not different than the general population
in Puerto Rico. The two most prevalent
components of the MetS in Hispanics
with HIV (ie, elevated triglycerides, low
HDL) were different from the general
population in Puerto Rico (ie, elevated
fasting glucose, waist circumference), but
elevated resting blood pressure was the
third most prevalent component in both
populations. We suggest that social and
cultural influences might be as strong as
the HIV infection itself and antiretroviral
therapy in explaining the development of
cardiometabolic dysfunction in Hispan-
cics living with HIV in Puerto Rico.
Understanding ethnic and sex differences
in the prevalence of cardiometabolic risk
factors is essential for the implementa-
tion of specific targeted interventions to
prevent subsequent vascular morbidity
and mortality in this population.

Acknowledgment
We thank the staff in each collaborating site
that made data collection possible. The study
was supported by NIH-CTSA-1-KL2-RR-024151.

References
1. Falutz J. Therapy insight: body-shape changes
and metabolic complications associated with HIV
and highly active antiretroviral therapy. Nat Clin
Pract Endocrinol Metab. 2007;3(9):651–661.
2. Morse CG, Kovacs JA. Metabolic and skeletal
complications of HIV infection: the price of
3. Centers for Disease Control and Prevention.
Prevalence of diabetes among Hispanics - selected
Hypertension-related mortality among His-
panic subpopulations. MMWR Morb Mortal
5. Ervin RB. Prevalence of Metabolic Syndrome
among Adults 20 Years of Age and Over, by Sex,
Race and Ethnicity, and Body Mass Index:
United States, 2003–2006. Hyattsville, Md:
National Center for Health Statistics; 2009.
of the metabolic syndrome in San Juan, Puerto
7. Ford ES, Giles WH, Dietz WH. Prevalence of the
metabolic syndrome among US adults: findings
from the third National Health and Nutrition
Prevalence of the metabolic syndrome in Latin
America and its association with sub-clinical
arterial atherosclerosis: the CARMELA cross
9. Puerto Rico Health Department. Puerto Rico
AIDS Surveillance Program Report. San Juan:
Puerto Rico Health Department; 2009.
10. Executive Summary Of The Third Report Of
The National Cholesterol Education Program
(NCEP) Expert Panel On Detection, Evalua-
tion, And Treatment Of High Blood Choles-
terol In Adults (Adult Treatment Panel III).
Diagnosis and management of the metabolic
syndrome. An American Heart Association/
National Heart, Lung, and Blood Institute
Incidence of metabolic syndrome in a cohort
of HIV-infected adults and prevalence relative
to the US population (National Health and
Nutrition Examination Survey). J Acquir
syndrome in HIV-infected patients from an
urban, Midwestern US outpatient population.
Carr A. Prevalence of metabolic syndrome in
HIV-infected patients receiving highly active
antiretroviral therapy using International Diabetes
Foundation and Adult Treatment Panel III
criteria: associations with insulin resistance,
disturbed body fat compartmentalization, elevated
C-reactive protein, and [corrected] hypoadipo-
Metabolic syndrome among HIV-infected
patients: prevalence, characteristics, and related
Behavioral Risk Factor Surveillance System.
2005. Available at: www.cdc.gov/bfrfs. Last
17. Pao V, Lee GA, Gronfeld C. HIV therapy,
metabolic syndrome, and cardiovascular risk.
of 2 epidemics: the intersection between obesity
and HIV infection in Philadelphia. J Acquir
tolerance and insulin sensitivity are unaffected
by HIV infection or antiretroviral therapy in
overweight women. J Acquir Immune Defic
F. Metabolic syndrome: from global epidemi-
ology to individualized medicine. Clin Pharma-
D. Coronary heart disease risks and lifestyle
behaviors in persons with HIV infection. J Assoc
Prevalence and predictors of metabolic syn-
drome among HIV-infected and HIV-unin-
fected women in the Women's Interagency
Detectable HIV viral load is associated with
metabolic syndrome. J Acquir Immune Defic
24. Bergersen BM, Schumacher A, Sandvik L,
Bruun JN, Birkeland K. Important differences
in components of the metabolic syndrome
between HIV-patients with and without highly
active antiretroviral therapy and healthy con-

Author Contributions
Design concept of study: Ramírez-Marrero,
Santana-Bagur, Hunter, Joyner
Acquisition of data: Ramírez-Marrero, De Jesús,
Santana-Bagur, Hunter, Frontera, Joyner
Data analysis and interpretation: Ramírez-
Marrero, De Jesús, Santana-Bagur, Hunter,
Frontera, Joyner
Manuscript draft: Ramírez-Marrero, De Jesús,
Santana-Bagur, Frontera, Joyner
Statistical expertise: Ramírez-Marrero
Acquisition of funding: Ramírez-Marrero,
Joyner
Administrative: Ramírez-Marrero, De Jesús,
Santana-Bagur, Hunter, Frontera, Joyner
Supervision: Ramírez-Marrero, De Jesús,
Santana-Bagur, Hunter, Frontera, Joyner

Ethnicity & Disease, Volume 20, Autumn 2010
428