**INTRODUCTION**

Racial disparities in cardiovascular disease among US adults are well established; Blacks have a higher risk of both cardiovascular disease (CVD) incidence and mortality than Whites. The association between psychosocial factors such as depression and cardiovascular disease is also well documented. The association between depressive symptoms and CVD mortality for Blacks but not Whites. However, this finding contrasts with some prior work showing earlier studies that reported associations of the diverse participant sample providing an opportunity to address this question. They found that depressive symptoms were associated with elevated odds of CVD mortality for Blacks but not Whites. However, this finding contrasts with some prior work showing associations between depressive symptoms and stroke incidence in both Blacks and Whites. These new results are also somewhat inconsistent with several earlier studies that reported associations.

Our study assessed differences in CVD mortality associated with elevated depressive symptoms using a large cohort of US Black and White adults aged ≥50.

---

**Original Reports: Cardiovascular Disease and Risk Factors**

**Objective:** To test whether the association between depressive symptoms and cardiovascular disease (CVD) mortality is stronger among Blacks than Whites.

**Design, Setting and Participants:** 2,638 Black and 15,132 White participants from a prospective, observational study of community-dwelling Health and Retirement Study participants (a nationally representative sample of U.S. adults aged ≥50). Average follow-up was 9.2 years.

**Outcome Measure:** Cause of death (per ICD codes) and month of death were identified from National Death Index linkages.

**Methods:** The associations between elevated depressive symptoms and mortality from stroke, ischemic heart disease (IHD), or total CVD were assessed using Cox proportional hazards models to estimate adjusted hazard ratios (HRs). We used interaction terms for race by depressive symptoms to assess effect modification (multiplicative scale).

**Results:** For both Whites and Blacks, depressive symptoms were associated with a significantly elevated hazard of total CVD mortality (Whites: HR = 1.46; 95% CI: 1.33, 1.61; Blacks: HR = 1.42, 95% CI: 1.10, 1.83). Adjusting for health and socioeconomic covariates, Whites with elevated depressive symptoms had a 13% excess hazard of CVD mortality (HR = 1.13, 95% CI: 1.03, 1.25) compared to Whites without elevated depressive symptoms. The HR in Blacks was similar, although the confidence interval included the null (HR = 1.12, 95% CI: 0.86, 1.46). The hazard associated with elevated depressive symptoms did not differ significantly by race (p > .15 for all comparisons). Patterns were similar in analyses restricted to respondents age ≥65.

**Conclusion:** Clinicians should consider the depressive state of either Black or White patients as a potential CVD mortality risk factor. (Ethn Dis. 2013;23(2):155–160)

**Key Words:** Depression, Stroke, Cardiovascular Disease, Mortality, Race

---

Benjamin D. Capistrant, ScD; Paola Gilsanz, MPH; J. Robin Moon, DPH; Anna Kosheleva, MS; Kristen K. Patton, MD; M. Maria Glymour, ScD

From Department of Society, Human Development and Health, Harvard School of Public Health, Boston, Massachusetts (BDC, PG, JRM, AK, MMG); and Carolina Population Center, University of North Carolina, Chapel Hill (BDC); and Department of Medicine, Division of Cardiology, University of Washington, Seattle (KK).
between depressive symptoms and CVD mortality in predominantly White general population samples.\textsuperscript{14,15}

Our study assessed differences in CVD mortality associated with elevated depressive symptoms using a large cohort of US Black and White adults aged \(\geq 50\) years. We hypothesized that depressive symptoms would predict CVD mortality in Blacks and Whites, with no significant variation in the magnitude of association by race. We also assessed whether this association varied by age.

**METHODS**

**Study Population**

The Health and Retirement Study (HRS) is a nationally-representative longitudinal survey of US adults aged \(\geq 50\) years and their spouses. Details of the study are provided elsewhere.\textsuperscript{16,17} Enrollments occurred in 1992, 1993, 1998 (based on respondent’s birth year) with assessments occurring approximately every two years. However, in order to have a consistent measure of depressive measures the following years were considered baselines: 1996, 1995, and 1998, respectively. The 2004 and subsequent HRS enrollees were not included in this analysis. We followed participants from baseline through the 2008 wave mortality assessment; retention rates through 2008 were above 80%. The HRS was approved by the University of Michigan Health Sciences Human Subjects Committee and these analyses were approved by the Harvard School of Public Health Office of Human Research Administration.

Of the full HRS sample enrolled in 1992, 1993 or 1998 (\(n=27,473\)), we excluded 8,536 who were age ineligible or with a sampling weight of 0 (31.1%); 1,386 (5.1%) who were Hispanic; 1,284 (4.7%) missing exposure assessment; and 426 (1.6%) who were missing key covariate information to ensure complete case analysis; leaving 15,845 respondents for the analyses.

**Assessment of Depressive Symptoms**

We defined elevated depressive symptoms based on the baseline measure of a modified, 8-item version of the Centers for Epidemiologic Studies-Depression (CES-D) scale. Our outcome variable, hereafter called “elevated depressive symptoms,” was a dichotomized indicator of whether the respondent reported experiencing \(\geq 3\) of the following symptoms in the last week: feeling depressed, feeling everything was an effort, restless sleep, feeling happy (reverse coded), feeling lonely, enjoying life (reverse coded), feeling sad, and could not get going. The \(\geq 3\) cutpoint was based on prior psychometric validation studies.\textsuperscript{18,19}

**Assessment of Mortality**

The HRS respondents’ deaths were confirmed via linkage to the National Death Index conducted in May, 2009. For deaths prior to 1999, cause of death was characterized using the International Classification of Diseases, Ninth Revision (ICD-9). Total CVD deaths included ICD codes 390 to 459; strokes included 430 to 438 and ischemic heart disease (IHD) included 410 to 414. For deaths after 1999, cause of death was characterized using the International Classification of Diseases, Tenth Revision (ICD-10). Total CVD deaths were classified as those with ICD-10 codes I00-99.9; strokes comprised I60-I69 and IHD comprised I20–I25.

**Covariates**

We considered groups of demographic covariates and health risk factors as potential confounders. All covariates were self-reported. We used the earliest reported values for each covariate. Demographics included race (Black/White), age (continuous), and sex (male/female). Socioeconomic status was measured as years of education (0–17). The health risk factors included body mass index (BMI) as a categorical variable (\(<18.5; 18.5–24.9\), reference; 25–29.9; \(\geq 30\)); smoking status (current and ever, never as reference); physical activity, measured as an indicator variable of regular (\(\geq 1\) times per week) physical activity in the previous two weeks (yes/no); a summary score of self-reported history of a doctor’s diagnosis of chronic conditions (high blood pressure, diabetes, cancer, lung disease, and arthritis; range 0–5), consistent with prior literature;\textsuperscript{10} heart medication usage (“Are you now taking or carrying medication for your heart problem?” yes/no); and psychiatric medication usage (“Do you now take tranquilizers, antidepressants, or pills for nerves?” yes/no).

**Methods of Statistical Analysis**

The hazard of CVD mortality associated with elevated depressive symptoms was assessed using age- and sex-adjusted Cox proportional hazard models stratified by race. Two additional models included covariates to adjust for CVD risk factors: first, socioeconomic and health status variables (education, comorbidity summary score, body mass index) and then health behaviors (smoking, physical activity). These factors likely partially mediate the causal pathway, so the results may underestimate the full causal effect of disease. Person-time was calculated from the initial interview date until the date of their death. These estimates were calculated using PROC PHREG in SAS version 9.3 (SAS Institute, Inc., Cary, NC), with the sampling weight from the first interview applied. We tested for effect modification on a multiplicative scale by examining the interaction between race and elevated depressive symptoms. Sensitivity analyses included the same models estimated in a sample restricted to respondents aged \(\geq 65\) at baseline (\(n=8,680\)). The HRS has a complex survey design, however, based on prior work suggesting minimal design effects, we treated the data as a simple random sample in these analyses (design effect estimates available from authors).
Table 1. Baseline participant characteristics of total sample and by race

<table>
<thead>
<tr>
<th>Variable</th>
<th>Full Sample</th>
<th>Age≥65</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n=15,845)</td>
<td>Blacks (n=2,401)</td>
</tr>
<tr>
<td>Average years of follow-up</td>
<td>9.1 ± 3.7</td>
<td>9.0 ± 3.7</td>
</tr>
<tr>
<td>Age, yrs</td>
<td>66.8 ± 10.3</td>
<td>65.3 ± 10.0</td>
</tr>
<tr>
<td>Male, %</td>
<td>42.3</td>
<td>36.2</td>
</tr>
<tr>
<td>Education, yrs</td>
<td>12.2 ± 3.0</td>
<td>10.7 ± 3.6</td>
</tr>
<tr>
<td>Depressive symptoms ≥3, %</td>
<td>19.6</td>
<td>27.6</td>
</tr>
<tr>
<td>BMI</td>
<td>26.8 ± 5.1</td>
<td>28.6 ± 5.9</td>
</tr>
<tr>
<td>BMI 4 categories, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI&lt;18.5</td>
<td>2.1</td>
<td>1.6</td>
</tr>
<tr>
<td>18.5≤BMI&lt;25</td>
<td>36.4</td>
<td>24.7</td>
</tr>
<tr>
<td>25≤BMI&lt;30</td>
<td>39.8</td>
<td>40.2</td>
</tr>
<tr>
<td>BMI≥30</td>
<td>21.7</td>
<td>33.5</td>
</tr>
<tr>
<td>Smoking status, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never-smoker</td>
<td>38.1</td>
<td>38.6</td>
</tr>
<tr>
<td>Ever-smoker</td>
<td>41.9</td>
<td>36.5</td>
</tr>
<tr>
<td>Current smoker</td>
<td>16.8</td>
<td>21.3</td>
</tr>
<tr>
<td>Chronic conditions, median ± IQR</td>
<td>1 ± 2</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Physically Active, %</td>
<td>45.0</td>
<td>37.4</td>
</tr>
<tr>
<td>Heart Medications, %</td>
<td>13.7</td>
<td>11.3</td>
</tr>
<tr>
<td>Psychiatric Medications, %</td>
<td>5.6</td>
<td>5.4</td>
</tr>
</tbody>
</table>

BMI, body mass index, or kg/m². Values are mean ± SD, median ± inter-quartile range, or percentage.

RESULTS

There were 13,444 White and 2,401 Black respondents in this analysis. There was an average of 9.2 years of follow-up in the total sample and 8.4 among those aged ≥65 at enrollment. The mean age of our cohort was similar for Blacks (65.3, SD=10.0) and Whites (67.1, SD=10.3) (Table 1). Prevalence of elevated depressive symptoms was higher in Blacks (27.6%) than Whites (18.1%). Whites had more years of education and generally better health than Blacks; Whites had lower BMI, lower prevalence of current smoking, higher prevalence of physical activity, and higher prevalence of heart medication usage than Blacks. Blacks and Whites had similar prevalence of chronic diseases and psychiatric medications (Table 1).

In the total sample, elevated depressive symptoms were associated with a significant elevation in hazard of total CVD mortality after adjusting for sex and age in both Blacks (HR=1.42, 95% CI: 1.10, 1.83) and Whites (HR=1.46, 95% CI: 1.33, 1.61) (Table 2). The estimated associations for IHD and stroke outcomes were similar between Whites and Blacks. The estimated association did not vary significantly by race for total CVD (P=.76 for test of interaction), IHD (P=.97) or stroke mortality (P=.76).

Results were similar in analyses restricted to respondents aged ≥65 at baseline (Table 2, bottom panel). For example, restricting to those aged ≥65, elevated depressive symptoms were associated with a 37% excess hazard of total CVD mortality (HR=1.37, 95% CI: 1.02, 1.85) among Blacks and 38% excess hazard among Whites (HR=1.38, 95% CI: 1.25, 1.53). Among those aged ≥65, the estimated associations between elevated depressive symptoms and IHD and stroke mortality were similar to those for the total sample aged ≥50 for both Blacks and Whites, although the association for strokes among Blacks had a wide confidence interval that crossed the null (HR=1.24, 95% CI: .54, 2.85). Like those aged ≥50, the hazard of mortality associated with depressive symptoms did not vary significantly by race among those aged ≥65 for total CVD (P=.99), IHD (P=.91) or stroke mortality (P=.72).

After adjusting for demographics and potential CVD risk factors, the estimated association between depressive symptoms with total CVD mortality was attenuated: Whites with depressive symptoms had a 23% elevation in hazard of CVD mortality (HR=1.23, 95% CI: 1.11, 1.35); and Blacks with depressive symptoms had an 18% elevation (HR=1.18, 95% CI: .91, 1.54) with a confidence interval that included the null. The associations for other outcomes and among those ≥65 were also attenuated; among Blacks, adjustment for covariates led to wider confidence intervals that crossed the null (Table 2, Model 2).

Models were then adjusted for health behaviors (smoking and physical activity), which further attenuated the associations. For example, the estimated association between depressive symptoms and total CVD mortality was a 12% increased hazard of mortality for Blacks...
Our study found that elevated depressive symptoms were associated with an increased hazard of CVD mortality among Blacks and Whites after statistically controlling for age and sex.
Study Limitations and Strengths

Although using a brief symptom scale (CES-D) rather than diagnosis of clinical depression is a potential limitation of this study, our measure is very similar to that used by prior studies. Furthermore, our cut-point for elevated depressive symptoms has also been shown to have high sensitivity and specificity for clinical depression. We controlled for particular health variables to facilitate comparisons with prior literature, however, we recognize that without better knowledge of the temporal order of covariates these models may yield biased results because of mediation. Although controlling for psychiatric medication use did not change our findings, this result should be interpreted cautiously because the measure available in HRS was limited.

The wide confidence intervals of estimates for Blacks reflect low sample size in this stratum; this is particularly true for IHD and stroke outcomes as well as in multivariable adjusted models. We may be underpowered to detect a result for this group. However, the interaction term test indicated no significant difference in effect sizes for Blacks and Whites. We examined interactions by race on a multiplicative rather than additive scale because the Cox model is naturally multiplicative. Our results support the use of a multiplicative model in that we found no evidence for deviation from multiplicativity in our interaction tests. However, because CVD mortality is generally higher among younger Blacks than Whites, the absolute excess event rate induced by depressive symptoms may be larger among Blacks, even if the relative effects are the same.

This study has a number of important strengths. The cause of death was linked from the National Death Index. Secondly, we used identical analytic design, measures, and analyses to prior research in this area, which improves the comparability of our findings to the extant literature. Lastly, we used a nationally-representative sample, enhancing the generalizability of findings.

Comparisons to Prior Literature

These results are consistent with prior literature that suggests depressive symptoms are associated with increased CVD-related mortality and incidence. Furthermore, our results are of a similar magnitude to those found in prior studies. Our estimates are lower than results from meta-analyses of the association between depression and incident cardiovascular events; however, differences in the study designs, age of the population, control variables, and exposure and outcome variables may account for these differences. As van der Kooy and colleagues note in their meta-analysis of this association among the elderly, depressive symptoms do not predict CVD onset as strongly as clinical diagnosis of depression.

We do not find differences in this association by race among either those aged ≥50 or among the older age cohort, which contributes to a somewhat mixed literature on the racial differences in the association between depression and CVD. Some studies report no racial difference in the association between depression and stroke onset. However, our results contrast with recent findings by Lewis et al who found that the effects of depressive symptoms on cardiovascular mortality among those aged ≥65 varied significantly by race in the Chicago Health and Aging Project (CHAP) cohort. For example, they found depressive symptoms were associated with a more modest and non-significant elevation in age- and sex-adjusted hazard of CVD mortality among Whites in CHAP (HR=1.26; 95% CI: .95, 1.68) than we find in HRS (HR=1.38; 95% CI: 1.25, 1.53), but a higher elevation among Blacks in CHAP (HR=1.95; 95% CI: 1.61, 2.36) than HRS (HR=1.37; 95% CI: 1.02, 1.85). The divergence in these hazard ratios may reflect distinct features of a geographically defined, urban cohort, such as shared life experiences or exposure to other contextual or environmental risk factors, that exacerbated the hazard of CVD mortality associated with depression that would not be present in a nationally representative sample. Consistent with this possibility, chronic life stress was associated with carotid intima-media thickness in Blacks but not Whites in the Pittsburgh site of the Study of Women’s Health across the Nation (SWAN).

In the Midlife in the United States (MIDUS) study, which is enriched with African Americans from Milwaukee, early life adversity was associated with elevated inflammatory markers among Blacks but not Whites; the authors suggest that racial interactions may be most evident in populations drawn from high-poverty urban areas.

Implications and Conclusions

Clinicians should be aware of the elevated hazard for cardiovascular mortality associated with depressive symptoms, regardless of a patient’s race. However, there are important racial differences in prevalence and treatment of depressive symptoms: in this sample, although Blacks had almost 10% higher prevalence of depressive symptoms than Whites, Blacks and Whites reported similar rates of psychiatric medication usage. A critical, unanswered question remains regarding whether CVD mortality risk declines when depressive symptoms resolve or are successfully treated. Further studies of this association are needed in samples adequately powered to test differences between Whites and non-White samples to replicate the results of a limited number of studies. In addition, future studies should explicitly assess differences in this association by race to see how the risk of mortality changes into older age.

In sum, our results indicate elevated depressive symptoms were associated with an elevated hazard of cardiovascular mortality for whites and blacks, and the association does not vary significantly by race. The patterns were similar among...
RACE, DEPRESSION AND CVDF MORTALITY - Capistrant et al

those in middle age (≥50) and those in older age (≥65).

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support from the American Heart Association grants 09PRE2080078 and 10SDG2640243, the National Heart, Lung and Blood Institute grants 5T32HL098048-05 and 1F31HL112613-01, and National Institute of Child Health and Human Development T32 HD007168 and R24 HD050924.

REFERENCES


AUTHOR CONTRIBUTIONS

Design and concept of study: Capistrant, Glymour

Acquisition of data: Kosheleva

Data analysis and interpretation: Capistrant, Gilsanz, Moon, Kosheleva, Patton, Glymour

Manuscript draft: Capistrant, Gilsanz, Moon, Patton, Glymour

Statistical expertise: Capistrant, Gilsanz, Moon, Kosheleva, Glymour

Acquisition of funding: Glymour

Administrative: Kosheleva, Glymour

Supervision: Patton, Glymour