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Diseases with an inherited component that

demonstrate different prevalence in various

ancestral populations can now be studied

using admixture mapping in an appropriate

admixed population. This strategy called map-

ping by admixture linkage disequilibrium or

MALD utilizes polymorphic genetic markers

that are spaced throughout the genome to

identify genomic regions where the estimated

admixture proportion is significantly different

than its expected value. These genetic markers

are selected based on their ancestry informa-

tiveness content. The MALD approach as-

sumes that genomic regions showing excess

ancestry from the ancestral population with

higher disease prevalence, in the sample of

admixed individuals, are more likely to harbor

polymorphisms that confer higher risk to

disease than others. Certain conditions in-

cluding essential hypertension, type 2 diabetes

mellitus and common complex forms of

nephropathy demonstrate clear differences in

disease frequency in individuals of African and

European descent and appear particularly

suited to this type of analysis. Genetic admix-

ture can also cause confounding in association

studies conducted on an admixed sample

leading to inflated type I error rates and

possible loss of power. This manuscript de-

scribes the background, methodologies and

uses for admixture mapping in the search for

genes that underlie type 2 diabetes mellitus

and its associated nephropathy in the African

American population, and statistical methods

to address the confounding issues in genetic

association tests. (Ethn Dis. 2008;18:384–388)
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INTRODUCTION

Approximately 20 million Ameri-
cans, or one of every 14 individuals has
diabetes mellitus, with an additional 6.2
million undiagnosed. Worldwide, the
prevalence of diabetes is expected to
increase by nearly 50% in this decade
alone. Diabetes is currently the leading
cause of end-stage renal disease (ESRD)
in developed nations. Minority popula-
tions such as African Americans (AA)
are at substantially greater risk, com-
pared to European Americans (EA), for
developing diabetes and diabetic ne-
phropathy. This manuscript reviews the
use of mapping by admixture linkage
disequilibrium (MALD) for the detec-
tion of genes that contribute to the
observed ethnic disparities in suscepti-
bility to type 2 diabetes mellitus and
diabetic complications.

ADMIXTURE: DEFINITION
AND IMPLICATIONS

Admixture describes a process by
which individuals from two (or more)
populations who have been separated
for long periods of time come together
and create offspring. The AA popula-
tion can best be described genetically as
an admixed population formed by the
gene flow between mainly individuals
with European and African ancestry.
Evidence of genetic contribution from
other ancestral populations, such as
American Indians and Asians, can be
observed to lesser degrees. Previous
studies report 3%–26% admixture of
Caucasian genes in AA, with higher
proportions found in northern com-
pared to southern states.1,2 The admix-
ture process varies widely even within
geographic regions. For example, AA in

Charleston, South Carolina had an
estimated Caucasian admixture rate of
11.6%, while this proportion was
estimated at 22.5% for AA living in
New Orleans.3

Long4 described two models of
admixture: 1) the intermixture and 2)
the continuous gene flow. In the
‘‘intermixture model,’’ the admixture
event occurs once between the ancestral
populations. The subsequent genera-

tions result from random mating among
individuals of the hybrid population,
assuming no mutation or selection. The
‘‘continuous gene flow model’’ assumes
a continuous flow from a donor to a
recipient population. Many researchers
believe the African American and His-
panic populations are prime examples of
the continuous gene flow model. Im-
portantly, this admixture process oc-
curred relatively recently, approximately
20 generations ago.

A recently admixed population of-
fers several experimental advantages for
mapping of disease genes, similar to an
inbred cross design. The primary ad-

vantage of studying admixed popula-
tions is derived from linkage disequilib-
rium (LD) created by the admixture
event. Linkage disequilibrium, or less
frequent recombination of nearby
stretches of genetic material, decays
rapidly in human populations. This
decay increases with recombination rate
between adjacent markers and the
number of generations after the admix-
ture event. Because AAs have experi-

enced recent admixture, their genomes
have had less recombination (or re-
shuffling) since population mixing be-
gan, and the stretches of identical
ancestry often extend over many mega-
bases. Parra et al3 reported significant
LD on chromosomal segments as long
as 20 centiMorgans. This important
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observation constituted the basis of using

recently admixed populations in genetic

linkage and association studies. The key

advantage of admixture mapping is that

it requires substantially fewer genetic

markers for a genomic search than do

other methods of association mapping

(haplotype or direct association studies).

The number of markers for a genomic

seared required to conduct these studies

is greatly reduced by using ancestry

informative markers (AIMs) instead of

random markers.5–9 AIMs have allele

frequencies, which vary greatly between

the two ancestral populations.

DIABETIC NEPHROPATHY
IN AFRICAN AMERICANS

More than 45,000 Americans with

diabetes began treatment for ESRD in

2004, equating to 44% of the incident

dialysis population.10 The prevalence of

diabetes differs across ethnic groups.

Among those .20 years of age, the

overall US prevalence of diabetes is

9.6%; 8.7% in European Americans

(EAs), 13.3% in AAs, 9.5% in Hispanic

Americans and 15% in American Indi-

ans and Alaskan natives.11 In addition,

the likelihood of developing diabetic

nephropathy differs markedly in each

ethnic group. African Americans with

diabetes have an overall fourfold higher

incidence rate of ESRD, relative to EAs.

This ethnic disparity, although attenu-

ated slightly, persists among those with

equal access to healthcare.12,13 Marked

ethnic differences in the amount of

coronary artery calcified plaque have

also been observed in hypertensive and

diabetic populations.14

Diabetes and diabetic nephropathy

cluster within families, perhaps more

strongly in AA families where 32% of

women and 27% of men reported

having a first or second degree relative

with ESRD, compared to only 15% of

EA women and 12% of EA men.15,16

The risk for early diabetic kidney disease

appears to be similar in AAs and

EAs.17,18 This suggests that: diabetic

nephropathy may progress more rapidly

to ESRD in AAs; a paradoxical higher

non-renal death rate may exist in EAs;

or a combination of these factors may

be present. Ethnic disparities in the

incidence rate of diabetes and diabetic

nephropathy and familial aggregation

strongly suggest that inherited factors

contribute to disease susceptibility. Ad-

mixture mapping may be a useful tool

to assist geneticists in detecting diabetic

nephropathy susceptibility genes.

USE OF ADMIXTURE IN
LINKAGE AND
ASSOCIATION STUDIES

Recently, there has been increased

interest in association studies as a useful

and powerful approach to map com-

mon disease genes.19,20 The issue of

identifying which populations will be

best suited for LD mapping has been

the subject of much debate.21,24 The

extent of LD is a complex function of a

number of genetic and evolutionary

factors such as mutation, recombination

and gene conversion rates, demographic

and selective events, and the age of the

mutation itself. Some of these factors

affect the whole genome while others

only affect particular genomic regions.

Because the LD created by the admix-

ture process is relatively recent, it

paradoxically offers great promise for

gene mapping, especially for traits such

as prostate cancer, hypertension, diabet-

ic complications, and multiple sclerosis

that have markedly different prevalence

among the ancestral populations and

cause confounding issues in genetic

association studies. The confounding

issues result from correlations between

markers that are due to the admixed

origin of the populations being studied.

In the 1950s, indications suggested

that admixture mapping might be

beneficial to localize genes underlying

ethnic variation in disease. The statisti-

cal basis of this approach was first

explored by Chakraborty and Weiss,25

and subsequently by Stephens, Briscoe

and O’Brien who termed it ‘‘mapping

by admixture linkage disequilibrium’’

(MALD).26,27 Admixture mapping has

been used successfully to identify disease

genes or loci associated with prostate

cancer,28 hypertension,29 and multiple

sclerosis.30 The application of admix-

ture mapping had been limited until the

availability of genome-wide sets of

highly informative AIMs and adequate

statistical tools to successfully conduct

these studies. One of the first applica-

tions was proposed by McKeigue31 who

demonstrated that conditioning on

parental admixture in an association

test between a marker and trait locus is

equivalent to a test of linkage. He later

applied this method32–34 to find evi-

dence of linkage between FY and AT3,

two markers located 22 cM apart from

each other, by testing for association of

ancestry conditional on parental admix-

ture. Zhu et al35 refined McKeigue’s test

by generalizing this method such that it

was valid under both the intermixture

and continuous gene flow models.

Patterson36 proposed a Bayesian whole-

genome statistic, which could be applied

in linkage analysis. Hoggart37 developed

an affected only association test for rare

diseases that provided, using the same

sample size, comparable results to a

case-control study and Montana and

Pritchard6,38 presented an association

test and genome-wide scan methodolo-

gy using admixture mapping. Wen-

Chung et al39 found that the long range

of linkage disequilibrium observed in

admixed individuals made interval

transmission disequilibrium tests more

powerful than marker-by-marker trans-

mission disequilibrium testing. Mon-

tana and Pritchard also showed that

random single nucleotide polymor-

phisms (SNPs) could be an acceptable

alternative when AIMs are not available.

Smith et al7 then identified a set of

more than 2,000 promising SNPs for

MALD analysis. New marker panels

have since been developed for admixture
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mapping in Hispanic Americans8,9,40

Assessing the statistical significance of

linkage peaks observed in admixture

mapping represents an important issue.

Earlier methods rely on either the

Bonferroni correction or computer-inten-

sive methods to determine whether

observed P values were statistically signif-

icant. Sha et al41 showed the first order

Markov Chain assumptions made about

the individual ancestry distribution could

also be applied to a statistical test for

linkage. They then utilized this assump-

tion to derive analytical significance tests

to determine whether an observed linkage

peak was significantly significant.

POPULATION
STRATIFICATION IN
GENETIC ASSOCIATION
TESTS AMONG
ADMIXED SAMPLES

Investigators have used measures of

individual genetic ancestry as covariates

in association studies in order to control

the type I error which may be inflated

when admixture can be a confound-

er.42,43 These methods are coined

structured association testing (SAT)

and can be divided into those that

estimate the ancestry proportion of each

individual in the sample and use this

estimate as a covariate in the test for

association,43–45 and those that rely

upon a measure of genetic background

obtained by performing a principal

component analysis (PCA) on the

genotypic data to provide control for

population stratification in the test for

genetic association.46–48 The first ap-

proaches propose starting by obtaining

individual ancestry proportion estimates

and using this estimate as a covariate in

the test for association. Several algo-

rithms and software have been devel-

oped to estimate individual ances-

try.6,35,37,38,49–53 These software

programs have been tested to different

degrees and some, STRUCTURE for

example, widely applied. Several reports

demonstrate that these programs provide

similar individual estimates when they

are run under the appropriate models.

However, some tend to cluster individ-

uals closer to the poles (1 or 0) more

often than others, when the ancestral

allele frequency estimate is biased.

Recent work by Redden and col-

leagues54 has shown that simply including

the individual admixture estimates as a

covariate in the test for association may

not be sufficient. Residual confounding

may still occur in non-additive models,

for example when testing for dominant,

recessive or overdominant effects. Divers

et al55 showed that the individual ancestry

proportion estimates should only be seen

as error contaminated measures of the

true individual ancestry proportions and

that ignoring these measurement errors

may inflate type I errors.

The principal component approach

adjusts for population stratification

through the inferred genetic background

variables obtained through the first (or

the first several) principal components

computed from the genotyped data. The

effect of the genetic background variable

on the phenotype of interest is then

modeled as a linear function56,57 or a

non-linear function.48,58

ADMIXTURE VS
SOCIOECONOMIC STATUS

Variation in disease prevalence and

severity cannot be explained by either

race or ethnicity alone. They should be

placed in the context of a rather

complex set of criteria that include

social, political, biological, and econom-

ic aspects, which are unique to each

society.59 The validity of racial/ethnic

categories for biomedical and genetic

research has recently been challenged.

Some researchers propose that a race-

neutral approach should be used, with

the focus on genetic clustering rather

than self-identified ethnicity for human

genetic categorization60,61; while others

claim that there is no biological basis for

race. Risch et al62–63 have provided an
epidemiologic perspective on the issue

of human categorization in biomedical

and genetic research that strongly sup-

ports the continued use of self-identified

race and ethnicity.

CONCLUSIONS

Genetic variation among races is

small, which explains why relatively few
diseases can be studied through admixed

populations. However, diseases with

different risks in populations of Africans

and Europeans are among those that can

be studied with admixture mapping.
Several disorders, including hyperten-

sion, diabetes and diabetic nephropathy,

are among the leading causes of mor-

bidity and mortality in the US and

abroad. Therefore, there is a great need
for statistical methods that can combine

the information provided by admixture

and other indicators of socio-economic

status to provide valuable insights

regarding the occurrence, progression,
treatment and hopefully cure of these

diseases.
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